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Abstract. We show that in the usual treatment of the O ( n )  symmetric Ginzburg-Landau- 
Wilson field theory Goldstone modes induce a negative susceptibility for n < 1 as the 
co-existence curve is approached. By using the des Cloizeaux formalism, in which in the 
limit n -+ 0 one maps the field-theoretic problem into a polymer solution problem, we find 
that this ridiculous situation affects the whole of the semi-dilute regime of polymer 
solutions. To examine the role of Goldstone modes within this formalism, we consider the 
generalised Heisenberg model of Stanley with self-avoiding constraint on a d = 2 square 
lattice in the limit n + 0. By taking highly anisotropiccouplings, we take the continuum limit 
in one direction for the transfer matrix and obtain a quantum mechanical Hamiltonian on a 
d = 1 lattice. This is used to obtain perturbation series in the coupling between lattice sites 
for the inverse correlation length and susceptibility and estimates of the exponents U and y 
are obtained. We obtain the equation of state to second order, and show the existence of 
spontaneous magnetisation even though it is absent in d = 1. The susceptibility is well 
behaved and positive. Finally, we obtain a van der Waals type expression for the osmotic 
pressure of a semi-dilute polymer solution to lowest order in the perturbation expansion. 
The calculations can be readily extended to systems of higher dimensionality. 

1. Introduction 

In an isotropic ferromagnet at temperatures below the Curie temperature, T,, the 
transverse susceptibility behaves as 

XT = M/ h, (1) 
where M is the magnetisation and h the absolute value of the applied magnetic field. 
This expression is easily derived if a relation of the form 

h = Mf(M2,  t )  (2) 

is assumed, where t = ( T -  T,)/Tc is the reduced temperature. In the model that is 
usually used to study phase transitions, the n-dimensional spin field-theoretic model 
with Ginzburg-Landau-Wilson Hamiltonian 

equation (1) may be derived as a Ward identity (Brezin et af 1973). The fact that xT 
diverges as h + 0 is an example of Goldstone's theorem (Goldstone et al 1962). The 
occurrence of spontaneous magnetisation breaks the isotropy of n-dimensional spin 
space (see equation (3) with h = 0); the direction of the magnetisation is not fixed a 
priori, however, and so there exist long-wavelength Goldstone modes or spin-wave 
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excitations which rotate the local magnetisation for an arbitrary small cost in energy. It 
has long been recognised that the singular behaviour of XT as h + 0 induces further 
singularities in other thermodynamic quantities; in particular, the longitudinal suscep- 
tibility 

is predicted to diverge on the co-existence curve ( t  < 0, h + 0, M # 0). Spin-wave 
calculations (Vaks et al 1968) predict 

XL = (JM/ah)t (4) 

xL - h-"', h + 0, t < 0, ( 5 )  
in three dimensions. Patashinskii and Pokrovskii (1973), using a Ginzburg-Landau 
form of potential, showed this to be a general result within mean-field theory. A 
general argument, similar in spirit to the spin-wave approach, can be formulated 
(Brezin and Wallace 1973, Wallace and Zia 1975) in which it is demonstrated that 

X L  - c1+ ~ z h - " ~ ,  (6) 
where E = 4 - d and CI and c2 are critical amplitudes depending only on n and E, with c2 
vanishing for the Ising case n = 1. These amplitudes have been calculated within the 
framework of the €-expansion to O(E) by Wallace and Zia (1975) to be 

cl=-[9--(9(n+g)ln2-811n3+ 1 E 25n2+ 142n +76 
n + 8  2 (n+8)  n + 8  

E 
(7) 

Suppose the theory is now analytically continued to non-integral values of n, in 
particular to n < 1; then, since c2 is proportional to the n - 1 transverse Goldstone 
modes, from (6) we see that xL becomes negative as h + 0, i.e. when the co-existence 
curve is approached. A negative longitudinal susceptibility is impossible, since by linear 
response theory 

where p = l / k B T .  At first sight, this might not be thought to be a serious problem but 
just another example of the curious results which can sometimes be obtained by analytic 
continuations in n (see Balian and Toulouse (1974), who showed that in certain 
circumstances even negative specific heats could be obtained on analytic continuation 
to negative values of n ) .  However, in this instance the problem is very serious, since 
there is at least one physical system lying in the domain of n < 1. Des Cloizeaux (1975) 
showed that there was an analogy between the n = 0 limit of a Lagrangian field theory 
with external field h and the properties of polymer solutions in the so-called semi-dilute 
regime where the polymer concentration is such that they overlap significantly. In this 
theory, the longitudinal correlation function, to which xL is the long-wavelength limit, is 
related to the correlations between the ends of one polymer and the ends of all the other 
polymers in solution. These correlations can be measured by neutron scattering 
experiments in which the end groups of the polymer chains are deuterated. The explicit 
relations between field-theoretic correlation functions and polymer correlation 
functions are given by Schafer and Witten (1977). In particular, 
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where ~ ( x )  is the density of chain end-points and 6 ( k )  is the Fourier transform of this 
quantity. A negative xL implies that a physically measurable entity (namely, the 
structure function S(k) for the deuterated end groups), positive definite at k = 0, has 
apparently become negative! 

This difficulty in analytic continuation of a field-theoretic expression for a measur- 
able quantity of polymer solutions prompts several questions. To see if this is a real 
problem for polymer solutions, we show in § 2 that a large region of the Daoud-Jannink 
(1976) plot of temperature versus concentration is affected, including the whole of the 
semi-dilute region. How far is the des Cloizeaux analogy valid? Predictions based on 
this theory and associated scaling ideas are in good agreement with experiments (Daoud 
et a1 1975). It is well known that the field-theoretic formalism suffers from uncontroll- 
able polydispersivity (des Cloizeaux 1975, Daoud et a1 1975, Schafer and Witten 1977, 
Moore 1977) due to the grand canonical ensemble of polymer chain lengths considered. 
However, one of us (Moore 1977) has shown that, by using this formalism, no errors are 
produced if the quantity under investigation is molecular weight independent. Indeed, 
in the semi-dilute poor solvent region where the excluded volume effect is ‘weak’ and it 
is possible to calculate quantities such as the screening length 6 and osmotic pressure 7~ 

directly using straightforward perturbation theory (Edwards 1966), the agreement with 
the field-theoretic formalism is good (Moore 1977). However, the fact that the usual 
perturbation expansion, when analytically continued to n = 0, gives a negative xL 
suggests that there must be something fundamentally wrong, even though everything 
apparently works well in low-order perturbation theory. In this paper we present a 
formalism which does not involve the conventional perturbation expansion and does 
not suffer from a negative xL. We start by considering the O ( n )  symmetric generalised 
Heisenberg model of Stanley (Stanley 1969, Stanley eta1 1970), with the constraint that 
the square of the modulus of the spins is equal to n. In the limit n + 0 such a model 
reduces to the self-avoiding walk. By considering the transfer matrix of the model in 
two dimensions in which the coupling strengths are highly anisotropic, we are led to 
consider a quantum mechanical formulation in which the ‘time’ axis is continuous and a 
spatial axis discrete. This is the n = 0 version of the models considered by Fradkin and 
Susskind (1978), Hamer et a1 (1979) and Kogut (1979) to develop systematic strong- 
coupling expansions of the Ising, XY and Heisenberg (n  = 3) models. While 
throughout this paper the calculations are presented only for d = 2, there is no reason 
either in practice or principle why they cannot be extended to d = 3. Also, there is no 
reason in principle why the procedure need be applied only to the generalised 
Heisenberg model. It also works for the model of equation (3), but the complexity of 
the calculation is considerably increased. 

The use of such a model is essentially an expansion about one dimension where 
there exists an exact solution (Stanley et a1 1970), analytically continued for n < 1 by 
Balian and Toulouse (1974). Considerable simplification occurs in the limit n + 0, in 
that only the two lowest energy levels of the one-dimensional quantum mechanical 
problem need be considered. Perturbation expansions in the weak coupling between 
the one-dimensional chains are then possible. A particularly simple graphical expan- 
sion for the mass gap or inverse correlation length of the two-dimensional self-avoiding 
walk is obtained which allows an estimate of the critical exponent v to be determined in 
§ 4. 

By considering the effect of an external field, we are also able to find a perturbation 
series for the susceptibility and an estimate of y. From the equation of state we are able 
to show that spontaneous magnetisation is possible, despite there being none in one 
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dimension (Balian and Toulouse 1974). The susceptibility is found to be well behaved 
and non-negative with no evidence of Goldstone mode problems. By Legendre 
transformation we construct the effective potential of the model which, by use of the des 
Cloizeaux (1975) ‘dictionary’, allows us to relate this to polymer variables and give an 
expression for the osmotic pressure. 

The layout of this paper is as follows. In § 2 we review the spin-wave type of 
argument that leads to equation (6 )  and the mechanism by which the transverse 
susceptibility induces singular behaviour in the longitudinal susceptibility. By relating 
the susceptibilities to polymer variables we determine the affected regions of the 
Daoud-Jannink plot. Section 3 introduces the model and its quantum mechanical 
formulation. Section 4 is devoted to the perturbation expansion for the mass gap and 
estimation of v for d = 2. Section 5 concerns the susceptibility series and § 6 the 
equation of state and spontaneous magnetisation. Section 7 relates the effective 
potential to polymer variables. Section 8 is a discussion of the results and conclusions. 

2. The negative susceptibility and the affected region of the Daoud-Jannink plot 

In this section we review the cause of the induced singularity in xL by means of 
diagrammatic perturbation theory. We also recall the general argument leading to 
equation ( 6 ) ,  and finally determine the region of the Daoud-Jannink plot that is affected 
by the difficulty in analytic continuation for n = 0. 

by the 
transformation 

For the Hamiltonian (3) with t < O  and M Z O  we ‘shift’ the field 

L = q5 1 - M, (8) 

M = (41) so that ( L )  = 0, (9) 

with 

and where the thermal average is defined by the functional integral 

which leads to H = HO + HI where 

and the perturbation is 

HI = d d ~ { ~ u ( L 2 + ~ ~ ) 2 + ~ ~ M L ( L 2 + ~ ~ ) + [ ( r o + % ~ M 2 ) M - H ] L } + c o u n t e r  terms. 

rL and rT are respectively the inverse longitudinal and transverse susceptibilities defined 
(13) I 

by 

rL1 = I ddx[(41(x)~l(o)>-M21, (14) 
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For the unperturbed longitudinal and transverse correlation functions in momen- 
tum space, we have 

gL(k)  = f ddx eikax [(41(~)41(O))Ifo-M2I 

= (L(k)U-k)>If ,  

Using these as ‘propagators’, a graphical perturbation expansion can be developed for 
the full longitudinal susceptibility. In treating the terms of equation (13 )  as pertur- 
bations, it should be noticed that the new vertex UM is 0 ( u 1 ” ) ,  since M 2  = O ( t / u )  as 
may be shown in mean-field theory by minimising equation (3). The expansion to O(u) 
of the longitudinal susceptibility is given by the diagrams of figure 1 .  The source of the 
induced singularity is the closed loop of transverse modes shown in figure 2, with a 
contribution proportional to 

L o r T  

& : O  & = o o & = o  :’o OL 
L L -v L 

-vM - -vM - 
2 2 

7 

L -cM L 
2 

Figure 1. Diagrammatic expansion of the longitudinal susceptibility to O(o). Labels L and 
T refer to unperturbed longitudinal and transverse correlation functions respectively. 

Figure 2. Source of induced singularity in longitudinal susceptibility due to closed loop of 
transverse modes. The weighting of this graph is (n - 1). 
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with rT given by (1) as rT = h/M. The graph has an (n - 1) weighting due to (n - 1) 
transverse modes. Evaluating the diagrams of figure 1 gives 

where 

rL = t + 3 v ~ ' / 2 ,  rT = t + b M 2 ,  

with 

Putting n < 1 (in particular n = 0) and rT = h /M,  it is evident that as h +. 0 the term 
given by equation (18) dominates and drives xL negative. The perturbation expression 
is consistent with the general form of equation (6). Further support is given by what is 
essentially a spin-wave type approach (Brezin and Wallace 1973, Wallace and Zia 
1975). 

For T < T,, i.e. t < 0, and for h small the dominant fluctuations are expected to be 
those transverse to the magnetisation. Therefore consider the effective Hamiltonian 
obtained from equation (3) by elimination of the longitudinal mode 41 in favou: of the 
(n - 1) transverse modes by the constraint C;='=, 4:  = M 2 ,  a constant, i.e. 

which is understood as a power series in 1/M. The effective Hamiltonian is 

If we expand the last term, it is easily seen that rT = h/M, and so as h + 0 we are 
examining the critical behaviour of this Hamiltonian. Under a renormalisation group 
transformation, the only interactions relevant for inducing anomalous dimensions or 
non-classical exponents are terms of the form (Xr1=2 4?)* (Wilson and Kogut 1974). 
Since such a term occurs in the Hamiltonian (25) with a factor of h, which tends to zero, 
the dimensions of the fields are expected to be classical. Denoting the transverse 
correlation length by .$, we have from equation (15) 

(26) IT - e'-''+ - ( 2 ,  

since 2d+ = d - 2 (q = 0). For the longitudinal susceptibility, we have from equation 
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(15), substituting from equation (24) for 41, 

- c1 + ~ ~ t ~ - ~ ~ + ~  - c1 + ~ ~ 5 ~ - ~ ~ + ,  
-1 rL --c1+c2tc, 

with c2 = cb(n - 1). 
Elimination of 5 between (26) and (27) gives 

rL1 - c1 -+ c ~ ~ T ~ / ~ ,  (28) 

which is basically equation (6). 
Turning now to the application of field theory to polymer solutions, we follow the 

treatment of Moore (1977) and quote the results of the des Cloizeaux (1975) formalism 
required to relate magnetic variables to polymer quantities. Given the effective 
potential r(M. t )  of the field theory with Hamiltonian (3), in the limit n + 0 polymer 
quantities are given by the relations 

c = ar/at, (29) 

C/N = iiw(ar/aM), (30) 

n/kBT = M(ar/aM) -r, (31) 

where c is the concentration of monomers, N is the average chain length and n the 
osmotic pressure. We determine the region of the Daoud-Jannink plot (figure 3) 
relating to xL becoming negative when analytically continued. 

In the poor solvent regime (region I11 of figure 3) the perturbation expressions 
(19)-(23) are valid (Moore 1977). Converting to polymer variables using (29) and (30), 
we have 

rL = 1/N + 2uc = 2vc, for N >> ( ~ u c ) - ' ,  (32) 

rT = 1/N, (33) 
with 

Hence the criterion for xL < 0 is 

N " ~  > constant ( ~ u c ) - ' / ~  or N > constant (2uc)-', in d = 3. (35) 

This is just the criterion for the semi-dilute poor solvent regime (Moore 1977). Since 
the cross-over line between semi-dilute poor and good solvent regimes (regions I11 and 
11) is given by c** - U, and so U < c in 111, an alternative way of expressing (35) is 

c > N P 1 I 2 .  (36) 

In the good solvent regime (region 11) we use the renormalisation group method of 
Rudnick and Nelson (1976) in which the recursion relations for t (7)  and U ( T )  are 
integrated out of the critical region to give a non-critical Hamiltonian H[T*].  The 
perturbation approach of the beginning of this section can then be used with t(T*), v ( T * )  
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Figure 3. The Daoud-Jannink plot of polymer solutions. The cross-over values are for 
d = 3. Regions I1 and I11 are the semi-dilute good and poor solvent regimes respectively. In 
both xL is negative. NB Strictly speaking, the plot is meaningless for v <: 0, as to ensure 
stability three-body or non-local two-body interactions have to be introduced. 

and M(T*) ,  and then relating back to the initial values t and v through 

t (r*)  = t e"*/QA(7*), (37) 

U(.*) = ZI es'*/Q(T*), (38) 
where 

Q(7*) = 1 + [8&U(T*)/E](e"* - 1) and A = a f o r n  -0. (39) 
From equation (B20) of Rudnick and Nelson (1976) (with our different normalisa- 

tion of the v term in (3 ) ) ,  we have 

l 7  ( n  + 8)&v2(7*)M2(~*) 
- $(n - 1)&v ( T * )  In TT(T*) - 

4TL(7*) 
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and the criterion for xL, < 0 is 

TT(T*) < 1. 

Converting to polymer variables, we note 

3509 

(44) 

but 1/N = t + v c Q ( ~ * ) ~ ~ - '  and c = i M 2 Q - A ( ~ * )  (cf Moore 1977) so 

TT(7*) = eZT*/QA(7*)N. (46) 

In the good solvent region where Q is large, we have 2vcQA-'(7*) = e-'", so that the 
condition (44) becomes 

1 / 2 v ~ Q ~ ~ - ' ( 7 * ) N  < 1 

or, substituting for Q'*-'(T*) (Moore 1977), 
- Z ( d u - Z ) / E ( d v - - l )  

< 1. (47) 

For d = 3 ( E  = l ) ,  and using the Flory value Y = 2, this is equivalent to 

c >constant N-4/5u-3/s (48) 

which is the criterion for being in the semi-dilute regime (Daoud and Jannink 1976). 
Hence the problem of negative xL exists throughout the entire semi-dilute regime. 

3. The model: a quantum mechanical lattice Hamiltonian 

The O(n)  symmetric 44 Hamiltonian of equation (3) generates in the limit n + 0 the 
conventional model for interacting polymers with excluded volume v (although the 
polydispersivity is somewhat unusual). To avoid the problems associated with a 
negative xL, we wish to present in this section an alternative perturbation expansion 
which is based essentially on an expansion about a one-dimensional limit. While in 
principle it is possible to carry out this expansion for the 44 Hamiltonian, the 
calculational complexities it would entail make it desirable to introduce a simplified 
model Hamiltonian. We believe that it is in the same universality class as that of the q54 
model, and the numerical values of its exponents are consistent with this belief. The 
starting point for the derivation of the new model Hamiltonian is a generalisation of the 
n-vector Heisenberg Hamiltonian (Stanley 1969, Stanley et al 1970), which in the limit 
n + 0 models self-avoiding walks. The version we consider is the anisotropic case 

(49) 

where n ( R )  is an n-dimensional spin vector at a site R of a two-dimensional lattice with 
6, and 6, nearest-neighbour vectors. (We shall discuss explicitly the case d = 2; the 
extension to higher dimensions is straightforward.) In the limit of large anisotropy 
K, >> K,, it is possible by standard methods to reduce the two-dimensional Hamiltonian 
of equation (49) to a one-dimensional quantum mechanical Hamiltonian, which then 
forms the basis for the subsequent calculations. 

H = -E [K,n (R) .n (R  + 6,) +K,n (R1.n ( R  +a,)], 
R 
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A factor of (kBT)-l  has been included in the exchange constants Kx and Ky for 
convenience. We choose the spins to be of length a'/ ' ,  i.e. 

In d = 1, in which K y  = 0 and R is a scalar, the model may be solved by using the transfer 
matrix 

T = exp[K,n (R 1. n (R + l)], (51) 

which acts on the n-dimensional sphere of radius n. Rescaling the spins n = n"'S 
allows the Funk-Hecke theorem to be used to determine the eigenvalues of T (Stanley 
et a1 1970)) which are 

A I  = r(n/2)(nK,/2)1-"'211+~/2-l(nK,), (52) 

where I, is the modified Bessel function of the first kind of order v and 1 = 0,1,2,  . . ., , 
The eigenfunctions are the generalised spherical harmonics in n dimensions. The 
degeneracies of the above A I  are given by 

( l+n-3) ! (21+n-2)  
l!(n -2)! 

0; = (53) 

For the s ( l  = 0) and p ( 1  = 1) states we recover the familiar results Do" = 1, DY = n. Since 
the partition function is given by 

Z = Tr T N  = A ;", (54) 
I 

where N is the number of sites in the linear chain, the free energy per site, in the 
thermodynamic limit, is 

F = -kBT In A,, (55) 

where A, is the maximum eigenvalue of T. The correlation function between two spins 
a distance z apart is 

Balian and Toulouse (1974) have investigated this model with the spins normalised to 
one. For n > 1 the s state has the largest eigenvalue, but for 0 < n < 1 it is possible for a 
p state to cross this state for sufficiently low temperature. However, in both the 
high-temperature and low-temperature phases there is no spontaneous magnetisation. 

Returning to the model here, we note from equation (52) 
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where the series expansion for 1, has been used. As n + 0 with K,  fixed we note 

A 0  = 1 + O ( n ) ,  A I  = K,[1 +O(n2)], 

A ,  = O(n '-I), 1 3 2 ,  

so that only the s and p levels survive in the self-avoiding walk ( n  -+ 0 )  limit, with a 
critical point defined by K,  = 1. 

We now return to d = 2 and write the transfer matrix between two rows or chains of 
spins (figure 4) as 

~ ( 7 )  = exp K, 1 n(m) .n ' (m)  + t ~ ,  1 ( n ( m ) . n ( m  + I )+  n'(m) .n'(m + I))), (59) 

where r is the lattice spacing in the x direction and primes denote nearest-neighbour 
chains. To develop a quantum mechanical formulation, we take the continuum limit in 
the x (or 7) direction so that 

( m  m 

T ( r )  = exp(-rH), 

or 

1 
H=l im-- In  T. 

T-0 7 

d i m )  n ' [ m + l l  

T T  0 0 . 0 

I .  0 0 0 . 
n i m l  nim+11 

Figure 4. Two neighbouring chains of spins. 

In order to find a simple form for H, it is necessary for K, to be large and K J K ,  = x << 1. 
Such an approach has been used by Wilson and Kogut (1974) and Stoeckly and 
Scalapino (1975) for 44 models. It has also been used by Fradkin and Susskind (1978) 
and Hamer et a1 (1979) to develop strong coupling expansions for the Ising, 0 ( 2 ) ,  O(3)  
and O(4) models. It is found that H takes the form 

H = C[Ho(m) -xn(m).n(m + l)], 
m 

where Ho is a single-site operator whose eigenvalues are given by 

Ti = -In A/,  (62) 
where A /  are the eigenvalues of the d = 1 transfer matrix ( 5 1 ) .  For example, for the 
model with spins normalised to 1, Balian and Toulouse give 

-In A ,  = -K, +:(a - 1) In ( K , / ~ T )  + (1/8K,)(21 + n - 3)(2l+ n - l ) ,  (63) 
which up to (arbitrary) constants is 

-In hi -(1/2K,)l(l + n  - 2 ) .  (64) 

1(1+ n - 2) is the spectrum of the squared angular momentum operator J 2 ( m )  in n 
dimensions, and so is consistent with the Hamiltonian derived in a different way by 
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Hamer et a1 (1979) for n = 2 ,3 ,4 .  From (64) we see that the p level is always below the 
s level for n < 1. 

Applying (62) to the eigenvalues ( 5 8 )  of our model, we see that, in the limit n + 0, 

ro = 0, rl = -In K, = A ,  r l+a  1 2 2 .  (65) 

So for Ho(m) we may consider a two-level system of an s state and n p-states. We 
consider A to take both positive and negative values, and perform perturbation 
expansions in the 'hopping' term 

HI = --x n ( m ) . n ( m  + 1). 
m 

We can also consider the effect of an external magnetic field by adding a term 

-h n l ( m )  
m 

to (61) where we have chosen h to be in the 1-direction. The rest of this paper is 
concerned with the quantum mechanical Hamiltonian 

on a one-dimensional lattice. This is a model for polymers in two dimensions. The 
generalisation of equation (68) to spins in a plane would be the appropriate model for 
polymers in three dimensions. 

4. Perturbation expansion for the mass gap 

In this section we take h = 0 and A >  0. Let Ho = Em Ho(m) and denote the eigenvalues 
of H and Ho by E,  and E:'). The two-point correlation function is 

where {I$,)} are the eigenfunctions of H. 

which is the difference between the lowest energy level and the first excited state: 
The quantity of most interest is the inverse correlation function or mass gap, t-l, 

(70) [--I - - E ]  - E ( ) .  

(A knowledge of 5 enables one to determine the polymer size exponent v.) We 
investigate this by a perturbation expansion in the 'hopping' term (66) about Ho. 
Denote the ground state 10) of Ho by 

HolO) = 0,  (71) 

i.e. all sites are in an s state and EL') = 0. The first excited state 11) of Ho that is 
translationally invariant is the zero-momentum state of a spin wave, 

where L is the number of sites of the lattice. By virtue of (50) we have 
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where ( .  . . ) A  denotes the angular average over the sphere in n dimensions. Using 
these and the simplicity of a two-level system, we find that the effect of H1 is to (1) raise a 
spin from the s state to a p state at a site and at a neighbouring site or  (2) lower from p to 
s at two neighbouring sites or (3) lower a p to s at a site and raise from s to p at a 
neighbouring site. Following Hamer et a1 (1979) and Kogut (1979), we use graphs to 
represent terms of the Rayleigh-Schrodinger perturbation series for and eo which 
may be obtained to high order from the formal expression 

where g is the resolvent 

We use a single vertical line to denote a p state at a site m and a cross for the single-site 
operator 

Thus the state 11) is shown in figure 5. Interaction terms XV are shown by horizontal 
lines joining neighbouring sites. The first- and second-order graphs for E' are shown in 
figure 6 and contribute 

E ! ' )  = -2x, E?)  == 2x2(-1 /2A). (79) 

Intermediate state denominators are determined by drawing dotted lines through a 
diagram: if such a line cuts only one vertical line, that graph is disallowed since the 
resolvent excludes such intermediate states. 

m-I m m+1 

Figure S. The state 11) of equation (72). Figure 6. First- and second-order graphs for e l .  
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Since V can ‘flip’ to left or right in the lattice, the graphs have a mirror reflective 
symmetry. A possible diagram for el  at O(x2) is shown in figure 7. However, this graph 
does not contribute in the limit n + 0, since the closed loop has an unrestricted sum over 
spin components which gives a factor of n. Two or more vertical lines cannot be drawn 
at a site, since this corresponds to values of 1 3  2 for states of the single-site Hamiltonian 
Ho(m). In consequence, our graphical series are considerably simpler than those of 
Hamer et a1 (1979); in particular, we do not have the complication of non-Abelian 
graphs. 

The graphs for e l  have been calculated to O(x5). It should be noted that, beyond 
second order, disconnected products have to be included; these are shown in brackets in 
the third-order graphs of figure 8. At fourth order, the new type of graph of figure 9 
appears?. The graphs for eo always have an even number of interactions V. The 
second-order graph is shown in figure 10. However, since this graph always consists of 
closed loops, there is no contribution in the limit n + O ,  and e 0 = 0 ,  to all orders in 
perturbation theory. 

Figure 7. Graph with zero contribution to €1. Figure 8. Third-order graphs for c1. 

Figure 9. A graph with two ‘horses’ in the same lane. Figure 10. Second-order graph for E O .  

To order x 5  we find 

(80) 
2 1 3 - 5  4 - 5  5 

where y = x/A. Referring to ( 6 5 )  for A, we see that the expansion (80) is effectively a 
high-temperature series expansion. Since we expect 

~ 1 - ~ o = A ( 1 - 2 y - y  -5y ZY ZY ) = A F ( y  ), 

5-’ - (Yc-  Y)”, Y + Y o  (81) 
at some critical value yc, we form the logarithmic derivative of F 

By forming Pad6 approximants of the logarithmic derivative, we may estimate the 

t We found it useful to consider interactions as horses in a race in which the Jockey Club ruled that no two 
horses could have the same place. Stewards’ inquiries were quite common. 
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position and residue of the pole and hence estimate yc and v. The results are shown in 
table 1. We see there is consistent evidence for a pole at 

y,=0*37*0-02. (83) 
The estimates of U from the residues may be compared to the Flory value of a, exact 
enumeration techniques (McKenzie 1976) which give U = 0.74 to v = 0-75, and the 
renormalisation group calculation of Hilhorst (1977) on a triangular lattice which gave 
v = 0.74. 

Table 1. The positions and residues (in brackets) of poles on the positive, real y axis in Pad6 
approximants to the mass gap. 

0 0.33 (0.67) 
1 0.39 (0.90) 0.37 (0.79) 
2 0.36 (0.73) 0.37 (0.81) 

5. The Susceptibility 

We now find a perturbation expansion for the susceptibility. Let 

fi = [Ho(m) .- X A  ( m )  . n (m  + I ) ]  = H~ + x V, 
m 

and 

m f o )  = EOI*O), (84) 
so that IWO) is the exact ground state. Consider the term (67) as a perturbation 

-h n ' (m) = -hX 
m 

to calculate the ground-state eigenvalue 

where 
Q = 1 - l*o)(*ol. 

The susceptibility x is then given by 

with eo = 0. However, we note from the previous section that EO = 0 to all orders in x. 
The state Iq0) is given in perturbation theory in V by 

m 4, 

I%)= 1 [ g ( E b O ) - E o + X v ) l k  o>= z: (gxV)k  O), 
k=O k=O 

(87) 

where 
g = (1 - O)(O ) / ( E h 0 )  -Ho). 
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The state q0) is properly normalised to 1, since (Po U,) will only contain graphs of 
closed loops beyond zeroth order. Noting that V is an even operator, so that To) only 
contains an even number of excited states, we see that 

so that Q niay be replaced by 1 in equation (86). Thus we obtain a perturbation 
expression for x, 

with 

1 T=-(l-xv-+xv-xv--. 1 1  1 1 1  . . 
H Ho Ho Ho Ho (89) 

Since Vis  defined by (76) with a minus sign, we see that all terms of (89) are positive. A 
diagrammatic expansion can also be developed for the terms of (89) with the same rules 
as before, except that single vertical lines are allowed since the resolvent g now projects 
out the ground state 0), not the state 1). The diagrams up to second order are shown in 
figure 11, and give 

x = (2/A)(1 +4y + 12;~'). (90) 

tP.Zflr!tJflP +mirror reflections 

Figure 11. Graphs to O(x*) for the susceptibility. 

Since all the terms in (89) are positive, we can use it to find a lower bound to x and an 
estimate of y c .  The dominant diagrams are the 'shortest path' type, e.g. figure 12 shows 
those of this type at O(x3). These diagrams have all intermediate states equal to l), and 
so have the smallest energy denominators. 

Figure 12. Dominant graphs at O(x3) for the susceptibility. 



A new approach to polymer Jolution theory 3517 

At Nth order the number of such diagrams is 

r = O  E ( 3 = 2 "  

and so 

2 "  
N=O 

i.e. 

Therefore x diverges before y = 0.5. The estimates of yc from table 1 are consistent 
with this. 

We have developed the expansion (89) to O(x4), and find 

x = (2 /A)( l+4y+123y2+385y3+113y4) .  (92) 

Whilst the ratios of successive terms RI versus 1/Z (figure 13) indicate that 
asymptotic behaviour has not been reached, we find for the [l, 21 Pad6 approximant to 
the logarithmic derivative, 

4 + 8.5  135y d 
2 = - In X(Y ), 1 - 0 . 1 2 1 6 ~  - 7 . 1 0 1 4 ~  dy (93) 

a pole at 0.37 with residue -1.34. The pole is consistent with the estimates for the mass 
gap of table 1, and the residue estimate for y can be compared to y =$ from 
enumeration techniques (Watts 1975). 

The estimates for v and y from such short series encourage us to believe the model 
merits further investigation. 

0 0 

0 
X 

x 
X 

0 

X 

Figure 13. Graph of ratios RI versus 1/1 for the Ith term of the series forx (0) and log (mass 
gap), (XI. 
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6. The equation of state 

In this section we consider the model in the presence of an external field h, and take A 
both positive and negative. For h + O ,  spontaneous magnetisation is shown to be 
possible without a negative susceptibility. 

First we diagonalise the single-site HamiltonianHo(h ; m) = Ho(m) - hnl(m).  Since 
we have 

and 
(94) (SJ~’ /S)=(paJn1Jp”)=O,  

(Sln’lpa)=aal, 

for all a,P = l , ,  , . , n, 

we only have to consider the reduced Hamiltonian 

This has eigenvalues 

A 1 = $A{ 1 - [ 1 + (2h/A)2]’/2}, A 2  = iA{l+ [1+ (2h/A)2]’/2}, (96) 
and eigenvectors 

where the mixing angle 8/2 is given by 

tan $3 = -Al/h or tan 8 = 2h/A; 

~ ~ = i A ( l = ~ s e c d ) ,  i = 1,2.  
hence 

(98) 

(99) 
The eigenvalues of the other n - 1 p-states are unaffected and remain at A. 
lattice, to zeroth order in x ,  we have H = Ho(h) =cm Ho(h; m) and 

For the 

i = l  forA>O, 
i = 2  forA<O, 

where / W o ) = r I  ltLi(” 
m 

and the free energy F is 

i = 1, A > > ,  
i = 2, A <  0, 

F 9 = Ai, 
L 

= i A ( 1  r s e c  e). 
(We shall use the convention of top sign for A > 0.) 

The magnetisation M is obtained by differentiation: 

M = *sin 8. 

Legendre transformation gives the effective potential 

T = F + M h  

= i A ( l r c o s  e )  
= ;A[ 1 F (1 - M2)1/2], 
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and the equation of state follows from 

h = ar/aM = *$AM( 1 - M ? ) - ' / ~ ,  ( 104) 

and the susceptibility 

aM/ah = * ( 2 / ~ ) ( 1 -  M ~ ) ~ / ~ .  (105) 

For h -* 0 we have M + 8 and no spontaneous magnetisation, as expected from the d = 1 
solution of Balian and Toulouse (1974). If we consider the effect of the perturbation 
Hl = xV, however, spontaneous magnetisation is possible. To first order in x, the 
ground-state energy is 

E=EO+X(V~IV/~O)=EO-X(YIO~ n(m).n(m+l) lVo) 
m 

= L ( A ~  - x  sin2 e) 
since 

($l(m)ln*(m)l$l(m))= ((SI cos$8+(pl sin$e)n"(cos36~s)+sin$81p)) 

= 2 sin ;e cos $e sal, 
and similarly 

($2(m)lna(m)l$2(m)) = -2 sin& cos$esal, 

so that we obtain 

F = $A(l  r s e c  6 -2y sin2 e), 
M = *sin e(i  *4y cos3 e), 
r = $A[I r COS e - 2y sin2 e( i  - 2 cos2 e)]. 

Solving for 13 in terms of M, we have 

COS 8 = (1 -M2)l l2[  1 * 4y( l  - M 2 ) 1 / 2  T 4y( l  -M2)3/2] + O(y2), 
which leads to 

r =$A[I T ( ~ - M ~ ) ' / ~ - ~ ~ M ~ ] ,  

and the equation of state to first order 

h =*iAM[(1-M2)-1/2*4y], 

For h + 0 w,e obtain either M = 0 or 

M=[1-(1/4y)2]1/2, 

i.e. for < Iy 1 < CO spontaneous magnetisation is possible. The susceptibility is again well 
behaved: 

aM/ah = *(2/8)(1 -M2)3'2[l-41yl(l -M2)3/21-1, (113) 

which is clearly positive if (1 11) is satisfied. 



3520 M A  Moore and CA Wilson 

This treatment, being of mean-field type, gives p = $ as expected, as may be seen 
from 

(1 14) 2 1 /2-  
M M ( Y 2 - Y c )  (Y  - Y Y 2 ,  

where we have taken the mean-field estimate y c  = from (90) and identified AX In T 
from (65). In the case M = 0, (113) agrees with (92) to first order. 

It is possible to continue this treatment to higher orders in perturbation theory. At 
second order, the contribution to the ground-state energy is 

Possible intermediate states / A )  are 
(a) ‘one particle’, 

with e0-eAl = TA sec 8 ;  

(b) ‘two particle’, either (i) 

with 

or (ii) 

eo - eA2 = F2A sec 8, 

€ 0  - eA3 = -A( l  *sec e). 
We have 

(Yo/ VIAl) = *2 2 L 112 sin $0 cos $e(cos2 $0 -sin2 $e)  

= sin e cos e, 
using (107) and 

Similarly 

(qol v ~ A ~ )  = L~~~ cos2 e, 

(qo) vlh3) = L ~ / ~  COS’ $e, 
and 

A > > ,  

or L’” sin2 $e, ACO. 
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Hence, from equations (1 15)-(122) we have 

8 cos3 8 sin2 e + cos5 8 + 2(n - 1) 
2A 1 +sec e 

= + ( x ~ L / ~ A ) ( I  +COS e - 16 COS’ e + 14 cos4 e)cos e forn=O,A>O, 

(123) 
or 

SE(’) = (x’L/~A)(-I +COS e + 16 cos2 e - 14 cos4 e)cos e for n = 0, A <  0. 

(124) 

We note that SE”’ of (123) vanishes for 8=0, in agreement with the mass-gap 
calculation of 0 4. Thus we have 

F = $ A [ I T ~ ~ ~ ~ - ~ J J  sin’e+$y’(*tl+cos e r 1 6 c o s 2  e * 1 4 ~ 0 s ~ e ) c o s  e], 
M = *sin e[ 1 * 4y cos3 e + $y’( 1 f 2 cos 8 - 48 cos’ 0 + 70 cos4 8)cos’ e ] ,  
r = $A[l T cos 8 - 2y sin’ e( l -  2 cos’ 6) 

+ 3y2(*2 + 3 COS e T 65 cos2 e T 2 cos3 e 132 cos4 e =F 70 cos6 e)]. 
(125) 

After much tedious algebra, cos 8 can be eliminated in favour of M to give 

r = +A{ 1 T (1 - M2)l/’ - 2yM’ 

*L 2y 2 (1 - M2)l/’[2 * (1 - M2)l/’ - (I -M2) (3  - 2M’ + 14M4)]}, (126) 

and the equation of state 

h / M  = It iA((1 -M2)-1/2T4y -iy2[2(1 -M2)-1/2 

* 2 + ( 1  -M2)1/2(-13+66M2-98M4)]}. 

Differentiation again gives a well behaved susceptibility. In the limit M + 0, A > 0, we 
recover 

,y =aM/ah/h ,o=(2/A)(1+4y+12$y2) ,  

which agrees to second order with equation (92). 
In the next section we relate some of these expressions to polymer variables. 

7. Polymer variables: the osmotic pressure 

To make contact with polymer variables, we use the relations (29)-(31) and the 
first-order expression for the effective potential r from equation (110): 

r = $A[I F (1 - M ~ ) ’ / ~ I - x M ~ .  

c = ar /aA,  
We modify (29) to 
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using the identification of A = -In K,  from (65). Then 

c = $[ 1 T (1 - M2)1/2] or M 2  = 4 c ( l  -c ) ,  

and 

c / N = $ M a r / a M =  *&f2[$A(l -M2) -1 /2T2~] ,  

i.e. 

+ 2x, 
A 1 

2(1-M2)1 '2=2N(l-c)  
* 

and so for the osmotic pressure 7~ we obtain 

[1/2N(1- C )  + 2 x 1 2 ~  -4xc(l-  C )  

i.e. 

I T / ~ ~ T = c / N ( ~ - c ) + ~ x c ~ .  

This expression is of van der Waals type, and if expanded for small c gives a virial 
expansion. We note that €or c > $ we take the +ve sign in (129), which corresponds to 
A < 0. Thus, although A = 0 is the critical point of tne d = 1 model, the corresponding 
value of c =+ plays no special role in equation (131). Also, (131) is derived for no 
special value of h ; in particular, we do not require h + 0. In the limit of large N we 
recover the mean-field result (Daoud et al 1975) that 

If the second-order expression for r (equation (126) is used, we remark that higher 
powers of N and c appear. 

8. Discussion 

We began by showing that, in the limit n + O  of the usual Ginzburg-Landau-Wilson 
field theory, the longitudinal susceptibility is driven negative by the Goldstone modes. 
Despite this, the theory as applied to semi-dilute polymer solutions (des Cloizeaux 
1975, Daoud et a1 1975, Schafer and Witten 1977, Moore 1977) appeared to give 
reasonably good agreement with experiments. All these calculations have not included 
the effect of the transverse modes, yet, as we showed in § 2, virtually the whole of the 
semi-dilute regime is  affected by the negative susceptibility. The alternative cal- 
culational procedure presented here is free from Goldstone mode problems, and xL 
remains positive, as can be shown by explicit computation to O(y2) from equation (127). 
The modes are not absent from our calculations, since they stem from the (n  - 1) 
p-levels close to the ground-state level. To check this, XT = JZm dzCT(z) may be 
calculated, using the expression (69) for Gr(t) with a # 1 within the perturbation 
expailsion of Q 6, and order by order this matches the expansion of M / h  (cf equations 
(1111, (127)). 
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We do not believe that the scaling forms proposed for ~ ( c )  etc (Daoud et a f  1975, 
des Cloizeaux 1975) will be changed by the problems caused by negative suscep- 
tibilities. This is because the argument for the scaling forms rests on assertions as to 
what happens on the two important length scales in the problem (namely, the polymer 
size and the screening length). Provided the resolution of the negative susceptibility 
problem does not require the introduction of a third length scale (and we do not think it 
does), then the scaling results should remain valid. 

The series expansions for the inverse correlation length and susceptibility of 00 4 
and 5 complement the strong coupling expansions of Hamer et a1 (1979) for the O(2), 
O(3) and 0(4 )  models, and when taken to higher order might yield better estimates for v 
and y of the self-avoiding walk than have previously been obtained by exact enumera- 
tion of short walks. This is currently being investigated (D J Elderfield, private 
communication). 
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